About Me

My photo
Mumbai, Maharastra, India
He has more than 7.6 years of experience in the software development. He has spent most of the times in web/desktop application development. He has sound knowledge in various database concepts. You can reach him at viki.keshari@gmail.com https://www.linkedin.com/in/vikrammahapatra/ https://twitter.com/VikramMahapatra http://www.facebook.com/viki.keshari

Search This Blog

Tuesday, October 29, 2019

Comparing Two Dataframe and Showing Difference Using Stack

It is quite simple to compare two dataframe and show the difference using stack method of Pandas, lets directly jump into the solution

Below are the steps to be taken to compare two dataframe
  • ·          First define dataframe df1 and df2 with some difference
  • ·          Create a new boolean dataframe with the result of df1!=df2, this will store true at the place where there is difference
  • ·          Then self multiply df1 and df2 with newly Boolean dataframe  
  • ·          Then stack the dataframe df1 and df2 in long format output
  • ·          Then concat stacked df1 and df2 with axis=1


Here below we are creating two dataframe with some difference in 2nd and 3rd row


import pandas as pd
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
import glob

# first dataframe
df1 = pd.DataFrame({"A":[1,3,5,7],
                    "B":[2,4,6,8],
                    "C":[0,2,4,6]})

# Second dataframe
df2 = pd.DataFrame({"A":[1,3,9,7],
                    "B":[2,2,6,8],
                    "C":[0,2,5,6]})
df1

Output:
         A        B        C
0        1        2        0
1        3        4        2
2        5        6        4
3        7        8        6       

df2
         A        B        C
0        1        2        0
1        3        2        2
2        9        6        5
3        7        8        6

Here below we are comparing two dataframe df1!=df2 and stores the Boolean in a new dataframe df3, df3 hold True value where there is difference in two dataframe, and false where there is same value

Then we are multiplying df1 with df3, i.e. df1[df3] , which will result in new dataframe with values only in the position where there is TRUE value in df3  

df3 = df1!=df2
df1[df3]

Output
A        B        C
0        NaN      NaN      NaN
1        NaN      4.0      NaN
2        5.0      NaN      4.0
3        NaN      NaN      NaN

The result of df1[df3] and df2[df3] are stacked and concatenated with axis=1 to form a difference dataframe.

pd_diff=pd.concat([df1[df3].stack().to_frame(),df2[df3].stack().to_frame()],axis=1)
pd_diff.columns = ["df1_values","df2_values"]
pd_diff

Output

df1_values       df2_values
1        B        4.0      2.0
2        A        5.0      9.0
C        4.0      5.03    

The above code can be re-written as

pd_d=pd.concat([df1[df1!=df2].stack().to_frame(),df2[df1!=df2].stack().to_frame()],axis=1)
pd_d.columns = ["df1_values","df2_values"]
pd_d

Output

df1_values       df2_values
1        B        4.0      2.0
2        A        5.0      9.0
C        4.0      5.03    


Data Science with…Python J
Post Reference: Vikram Aristocratic Elfin Share

Monday, October 21, 2019

Using Generator Expression to Read multiple file dynamically and store data in single Pandas dataframe

In previous two posts we used traditional way to read multiple file, store it dynamically with filename as an additional column in the data frame. Here in this post we will do the same but with the help of Generator expression.

Let look at how we can read multiple file, here we called pandas concat function and kept a iterative read_csv as parameter which take file name from for loop i.e. generator expression.


import pandas as pd
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
import glob

read_file = glob.glob('emp*.csv')
read_file
type(read_file)

Output: 
List

df_all=pd.concat(pd.read_csv(file) for file in read_file)
df_all.reset_index(drop = True)

Output: 
         emp_no   emp_name emp_sal
0        E1001    Aayansh           1000
1        E1002    Prayansh          2000
2        E1003    Rishika           1500
3        E1004    Mishty            900
4        E2001    Sidhika           1000
5        E2002    Kavita            2000
6        E2003    Happy             1500
7        E2004    Sandeep           900
        
Let’s add file name to the dataframe, which can be done by calling assign function and pass new column assignment in it. Below is the code

df_all=pd.concat(pd.read_csv(file).assign(filename=file) for file in read_file)
df_all.reset_index(drop = True)


Output
emp_no   emp_name emp_sal  filename
0        E1001    Aayansh  1000     emp1.csv
1        E1002    Prayansh 2000     emp1.csv
2        E1003    Rishika  1500     emp1.csv
3        E1004    Mishty   900      emp1.csv
4        E2001    Sidhika  1000     emp2.csv
5        E2002    Kavita   2000     emp2.csv
6        E2003    Happy    1500     emp2.csv
7        E2004    Sandeep  900      emp2.csv

Previous Post:


Data Science with…Python J
Post Reference: Vikram Aristocratic Elfin Share

Sunday, October 20, 2019

Python: Keeping track of which data comes from which file

If you have dataframe consist of data from multiple file, and you want to keep a column to preserve the information of file from where the data is coming along with the content of the file then we can make use of DataFrame assign function to create the column while reading and creating dataframe.

We are first taking an empty dataframe with columns in it.
To read multiple file in a directory we are using glob module
Then while reading the content of file in dataframe, we will use assign function to create new column to store filename along with data.

We have two file emp1.csv and emp2.csv in our python directory, lets try to read the file name through glob module


import pandas as pd
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
import glob

read_file = glob.glob('emp*.csv')
read_file

Output: ['emp1.csv', 'emp2.csv']

type(read_file)

Output: list
        
Here you see the read_file object of glob consist of all the files from the python parent directory.

Now we need to read the content of all file in the directory and keep all data in a single dataframe.
First we create an empty dataframe with column name and an additional column to store the filename from where data is getting extracted and stored in dataframe.

Then we loop through the filenames list (read_file) and pass the file name to pd.read_csv function
While reading file and storing data in dataframe we use assign function to create one more filed with the information of filename
df_file = pd.read_csv(files).assign(filename=files)

There after we concate the data frame to make a single dataframe. In the output you can see data are segregated under filename

df = pd.DataFrame(columns=['emp_no','emp_name','emp_sal','filename'])

for files in read_file:
    df_file = pd.read_csv(files).assign(filename=files)
    df= pd.concat([df,df_file],axis=0)
   
df

Output

emp_no   emp_name emp_sal  filename
0        E1001    Aayansh  1000     emp1.csv
1        E1002    Prayansh 2000     emp1.csv
2        E1003    Rishika  1500     emp1.csv
3        E1004    Mishty   900      emp1.csv
0        E2001    Sidhika  1000     emp2.csv
1        E2002    Kavita   2000     emp2.csv
2        E2003    Happy    1500     emp2.csv
3        E2004    Sandeep  900      emp2.csv

df.groupby(['filename']).count()

         emp_no   emp_name emp_sal
filename                 
emp1.csv 4        4        4
emp2.csv 4        4        4



Data Science with…Python J
Post Reference: Vikram Aristocratic Elfin Share